US009477600B2

United States Patent

(12) (10) Patent No.: US 9,477,600 B2
Jalal et al. 45) Date of Patent: Oct. 25,2016
(54) APPARATUS AND METHOD FOR SHARED 5,682,516 A 10/1997 Sarangdhar et al. 711/146
CACHE CONTROL INCLUDING CACHE 5,802,577 A 9/1998 Bhat et al. 711/146
LINES SELECTIVELY OPERARLE IN 5,809,536 A 9/1998 Young et al. 711/144
5,813,034 A 9/1998 Castle et al. 711/146
INCLUSIVE OR NON-INCLUSIVE MODE 5,829,033 A 10/1998 Hagersten et al. . .. 7117141
5,864,671 A 1/1999 H t t al ... 709/213
(75) Inventors: Jam.shed Jalal,. Austin, TX (US); Mark 5,926,830 A 7/1999 F:i%::ers ene 2 711122
David Werkheiser, Austin, TX (US); 6,052,760 A 4/2000 Bauman et al. . 711/119
Brett Stanley Feero, Austin, TX (US); 6,275,909 Bl 8/2001 Arimilli et al. T11/146
Michael Alan Filippoj Driftwood, X 6,314,498 B1* 11/2001 Arimilli et al. 711/144
(US) 6,324,622 B1 11/2001 Okpisz et al. 711/146
6,338,124 Bl 1/2002 Arimilli et al. 711/144
. . 6,343,347 Bl 1/2002 Arimilli et al. 711/143
(73) Assignee: ARM LIMITED, Cambridge (GB) 6351791 Bl 2/2002 Freerksen et al. 711/146
. . o . 6,353,875 Bl 3/2002 Arimilli et al. T11/143
(*) Notice: Subject to any disclaimer, the term of this 6,502,171 Bl 12/2002 Arimilli et al. . .. 711/146
patent is extended or adjusted under 35 6,810,467 Bl 10/2004 Khare et al. 711/146
(21) Appl. No.: 13/137,357 OTHER PUBLICATIONS
(22) Filed: Aug. 8, 2011 UK Search Report dated Sep. 26, 2012 for GB 1210115.0.
(65) Prior Publication Data (Continued)
US 2013/0042070 Al Feb. 14, 2013 . . .
Primary Examiner — Tuan Thai
(51) Imt. CL Assistant Examiner — Glenn Gossage
GO6F 12/08 (2016.01) (74) Attorney, Agent, or Firm — Nixon & Vanderhye PC
(52) US. CL
CPC ... GOG6F 12/084 (2013.01); GO6F 12/0811 (57) ABSTRACT
(2013.01); GOGF 2212/502 (2013.01); GO6F A data processing system 2 includes a cache hierarchy
. . . 2212/601 (2013.01) having a plurality of local cache memories and a shared
(58) Field of Classification Search cache memory 18. State data 30, 32 stored within the shared
CPC .o GOG6F 12/084; GO6F 12/0811; GO6F cache memory 18 on a per cache line basis is used to control
12/0815; GOGF 2212/502; GOGF 2212/601; whether or not that cache line of data is stored and managed
GO6F 2212/62; GO6F 2212/621 in accordance with non-inclusive operation or inclusive
USPC S 711/ 130., 144, 146 operation of the cache memory system. Snoop transactions
See application file for complete search history. are filtered on the basis of data indicating whether or not a
. cache line of data is unique or non-unique. A switch from
(56) References Cited

U.S. PATENT DOCUMENTS

5,291,442 A
5,623,632 A

3/1994 Emma et al. . 711/120
4/1997 Liuetal. ..ccocovvrernnnne 711/144

AU Switch Start

e

non-inclusive operation to inclusive operation may be per-
formed in dependence upon the transaction type of a
received transaction requesting a cache line of data.

24 Claims, 5 Drawing Sheets

66
=

48\1

82 m

Transaction N
recefved In
13§

Return data
and invalidate
ling in L.3%

2
Snoopo e 2i1ds —{ Tt L3
v

il
50

Transaction type
= read_clean ?

54

Fith anoter L1251

RNFID
mismeich? | y

70

Read data from L3§
Invalidate data in L33
and store data in
requesting transaction [

source L112§

74

Transaction type =
WUWUL/Read_once ?

Read data from main
menmiory, store [n L3§,
mark unique ang retuml_]
data fo requesting
transaction source

78
)

Read data from main

Retun data to
requesting ransaction
soures and store
in L1125

source and store

Read data from main
memory, refum data to
requesting transaction

memory, store in L33,
mark MESI=shared,
retum data fo
requesting transaction
source and sfore in

In

[[

US 9,477,600 B2

Page 2
(56) References Cited 2008/0183972 A1 7/2008 Dieffenderfer 711/146
2008/0244193 Al 10/2008 Sistla et al. 711/146
U.S. PATENT DOCUMENTS 2008/0270708 Al 10/2008 Warner et al. .. 711/146
2008/0288725 Al 112008 Moyer et al. 711/146
6,848,003 Bl 1/2005 Arimilli et al. 709/232 2008/0313411 Al 122008 Sugizakiccccocoovvvinn 711/144
6,928,522 B2* 8/2005 Yang ... L T711/144 2009/0138660 Al 5/2009 Bell, Jr. et al. 711/130
7.325.102 Bl 1/2008 Cypher . T711/146 2009/0198912 Al 8/2009 Arimilli et al. 711/141
7:640:399 Bl 12/2009 Lepak et al. . LT11/136 2009/0198915 Al 8/2009 Arimilli et al. 711/146
2001/0025335 Al 9/2001 Freerksen et al. . T11/146 2009/0240892 Al 9/2009 Moyer 711/146
2002/0078310 Al 6/2002 Frank et al. ... L 711/148 2009/0300289 Al 12/2009 Kurits et al. 711/133
2002/0087809 Al 7/2002 Arimilli et al. . o T11/144 2010/0106912 A1* 4/2010 Cypher et al. ... - 7117141
2002/0129211 Al 9/2002 Arimilli et al. . o T11/146 2010/0153647 Al 6/2010 Guthrie et al. . . 7117122
2003/0005237 Al 1/2003 Dhong et al. 711/146 2010/0153650 Al 6/2010 Guthrie et al. .. - 7117133
2003/0009637 Al 1/2003 Arimilli et al .. 711/144 2010/0235577 Al 9/2010 Guthrie et al. .. - 71122
2003/0115423 Al 6/2003 Chang LT711/145 2010/0235584 Al 9/2010 Guthrie et al. 711/135
2003/0120874 Al 6/2003 Deshpande et al. 711/141 2010/0262778 Al 10/2010 Cargnoni et al. . 71118
2003/0131201 Al 7/2003 Khare et al. 711/144 2010/0262782 Al 10/2010 Guthrie et al. 711/122
2003/0233523 Al 12/2003 Jamil et al. .. L T711/144 2010/0262783 Al 10/2010 Guthrie et al. 711/122
2004/0123052 A1 6/2004 Beers et al. . o T11/150 2010/0262784 Al 10/2010 Guthrie et al. .. . 711122
2004/0199727 Al 10/2004 Narad .oovoeevcoeoveriis 711/138 2010/0332771 A1* 12/2010 Gray et al. 711/148
2004/0268052 Al 12/2004 GlaSCO wovvvvvoroooi, 711/141 2011/0264650 A1 10/2011 Tobin et al. 707/722
2005/0160430 Al 7/2005 Steely, Jr. et al. .. 719/310
2005/0182907 Al 8/2005 Shen et al. 711/146
2005/0216672 Al 9/2005 G_schwind et al . T11/137 OTHER PUBLICATIONS
%882;8?2%3‘82 ﬁ} ggggg é;;ltlzt al ;ﬁ;}jg M. Blumrich et al, “Exploring the Architecture of a Stream Register-
2006/0179244 Al 8/2006 Goodman et al. 7117141 Based Snoop Filter” Transactions on High-Performance Embedded
2006/0212659 Al 9/2006 Dieffenderfer et al. 711/141 Architectures and Compilers 111, Lecture Notes in Computer Sci-
2006/0224839 Al 10/2006 Blumrich et al. 711/146 ence, 2011, vol. 6590/2011, pp. 93-114.
2006/0236037 Al 10/2006 Guthrie et al. 7117141 A. Dash et al, “Energy-Efficient Cache Coherence for Embedded
2007/0038814 Al* 2/2007 Dieffenderfer et al. 711/141 C i gy . .)
2007/0083717 Al 4/2007 Rajamony et al. 711/141 Multi-Processor Systems through Application-Driven Snoop Filter-
2007/0091790 Al 4/2007 Passey et al. ... 370217 ing” Proceedings of the 9 EUROMICRO Conference on Digital
2007/0143550 Al 6/2007 Rajwar et al. 711/146 System Design (DSD’06), pp. 79-82.
2007/0156972 Al 7/2007 Uehara et al. 711/146
2008/0086601 Al 4/2008 Gaither et al. 711/141 * cited by examiner

US 9,477,600 B2

Sheet 1 of 5

Oct. 25, 2016

U.S. Patent

Aowapy
uep

L 'Ol
alon| [a10) ai0n| |al0n 2109 | {e10)
] 1 | | |
Sl [$17 $11| [$11 $1f [$11
| | | | d
$21 21 $21
A 4’ — -0l g
: ,
|
B 8alneQ
) o/l
f
ol
— -
Aﬂ 0¢ t
| 1ay05u09
1 Aowop A
= J] €
14 Bl
¥ o
L 1308

US 9,477,600 B2

Sheet 2 of 5

Oct. 25, 2016

U.S. Patent

g1]

¢ 9Ol
Anoa
p Jefjonuog - comﬁmgw& Lpz
¢ ayoe) dooug
¢t 0%
o
N N AN iy J|\-82
QIANSANN 1SN glep aloes
i Reiy syoes
I
9c

US 9,477,600 B2

Sheet 3 of 5

Oct. 25, 2016

U.S. Patent

v "Old
[0:7] 04Ny | [0:4] LAIANY
€ Old
[0:7] QIINY [0] NN/N [0:1] 1S3
smowgm

U.S. Patent Oct. 25, 2016 Sheet 4 of 5 US 9,477,600 B2
Snoop
Filtering Start
\
Transaction
347 received in N
L3%
38
Y ~
Y Broadcast
36\ Hit in L3$? N ~! snoop requests
to all L2/L1$s
Y
y
Y | Unique and modifying | -40
transaction type ?
e . N 41
RNFID mismatch ? [Not modifying Y
Y N N transaction type ?
\ vy
Send directed Send broadcast
42
snoop to Snoop requests 4
transaction to all L2/L1$s
source indicated
by stored RNFID non-unique mark
H
46 >

U.S. Patent

Oct. 25,2016 Sheet 5 of 5 US 9,477,600 B2
NI/l Switch Start
by transaction -
type 66
\ o
. Return data
48| [Transaction N | —= andinvalidate
received in ling in L3$
L3$? 6&
58\ Y Retum data and
Snoop to all L2/L1%s | Hit in L3$ 2 | change to non-unique
R NJ 70
50 RNFID =
Y7 |mismeteh?[y | Read data from L33
64 ‘ ty invalidate data in L3$
, and store data in
54 Tiargzzctggatxg;e | requesting transaction [|
= L N N source L1/L2$
Htinanother L1L2S 1 6o | 7
Y Transaction type= | Y
53 |] WU/WUL/Readance ? — Read data from main
Transaction type= N = N memory, store in L33,
read clean ? - 72 |_..Imark unique and retumn|_.|
— data to requesting
5& Y Transaction type = Y transaction source
d_shared clean? | |
Store data in L35 and == = 54
mark non-unique 76 80 Read data from main
60 - o memory, store in L3§,
- ¥ Read data from main mark MESI=shared,
Return data to memory, return datato| L reurndatato |-
requesting transaction requesting transaction | | requesting transaction
source and store source and store in source and store in
in L1/L2% L1/L2% L11L2%
End

FIG. 6

US 9,477,600 B2

1
APPARATUS AND METHOD FOR SHARED
CACHE CONTROL INCLUDING CACHE
LINES SELECTIVELY OPERABLE IN
INCLUSIVE OR NON-INCLUSIVE MODE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of data processing
systems. More particularly, this invention relates to the
control of a shared cache memory within a data processing
system.

2. Description of the Prior Art

It is known to provide data processing systems with
multiple levels of cache memories. For example, a system
incorporating multiple transaction sources, such as multiple
processor cores, may provide a local cache memory dedi-
cated to each of these transaction sources and a shared.
cache memory that is shared between the transaction
sources. For example, an individual processor core may
have its own level one (LL1) cache, a tightly bound cluster of
processor cores may share a level two (L2) cache above the
L1 caches in the hierarchy and finally a level three (L3)
cache may be shared between the clusters of processors.

It is known to operate such cache hierarchies in an
inclusive mode in which an individual cache line of data
may stored in more than one cache within the cache hier-
archy. This provides for more efficient data sharing but has
the disadvantage of consuming more cache storage capacity.
Another mode of operation of cache hierarchies is a non-
inclusive mode (an exclusive mode). In this mode a given
cache line of data is normally stored in only one cache
memory of the cache hierarchy. This reduces the amount of
cache storage used but is less efficient for data sharing.

SUMMARY OF THE INVENTION

Viewed from one aspect the invention provides an appa-
ratus for processing data comprising:

a plurality of transaction sources, each of the plurality of
transaction sources having a local cache memory; and

a shared cache memory coupled to the plurality of trans-
action sources;

wherein the shared cache memory is configured to operate
to store at least one of each cache line of data stored and each
range of cache lines of data stored in accordance with an
individually selectable one of either:

(1) an inclusive mode; and

(i) a non-inclusive mode.

The invention recognises that a shared cache memory can
be formed so as to support both inclusive mode operation
and non-inclusive mode operation selected on an individual
cache line basis or on an individual range of cache lines
basis (e.g. a range of N adjacent cache lines in memory
address space are switched together between being stored in
one of a non-inclusive mode or an inclusive mode). This
permits an advantageous balance to be reached between the
efficiency of data sharing weighed against the use of the
cache storage capacity.

Whilst it is possible that the control of whether or not a
cache line of data is stored in the inclusive mode or in the
non-inclusive mode may be performed by dedicated separate
circuitry, such as directory circuitry, it is convenient and
efficient that the shared cache memory uses state data stored
in the shared cache memory to control on a cache line by
cache line basis whether the cache lines are stored in the
inclusive mode and the non-inclusive mode.

10

15

20

25

30

35

40

45

50

55

60

65

2

The state data used to control the mode applied for an
individual cache line can take a variety of different forms. In
some embodiments, the shared cache memory stores unique
status data for each cache line stored therein, and associated
with a given one of the plurality of transaction sources, this
unique status data indicating whether the cache line of data
is stored in a local cache memory of any other of the
plurality of transaction sources, i.c. indicates whether the
data is stored uniquely for one transaction source or is stored
non-uniquely for multiple transaction sources.

The shared cache memory may also store transaction
source identifying data for a cache line of data identifying
one or more of the transaction sources that are associated
with that cache line of data. Thus, the transaction source
identifying data may indicate an individual transaction
source associated with a cache line of data within the shared
cache memory that is being stored uniquely for that trans-
action source or may alternatively store transaction source
identifying data identifying multiple transaction sources
associated with the cache line data stored within the shared
cache memory. An individual item of transaction source
identifying data could also identify multiple transaction
sources as potentially storing the cache line of data (i.e. be
non-precise) and so requiring of a snoop operation (e.g. all
even numbered transaction sources, all transaction sources
within a certain range, etc.).

A low overhead embodiment is one in which the trans-
action source identifying data identifies a single transaction
source from among the plurality of transaction sources. If
more than one transaction source is associated with a cache
line of data, then in such an embodiment the transaction
source identifying data cannot track these multiple transac-
tion sources. In other embodiments it is possible that more
resources may be provided to the transaction source identi-
fying data such that it may identify up to a maximum of a
proper subset of the plurality of transaction sources as being
associated with a cache line of data, i.e. more than one
transaction source, but less than all of the transaction
sources.

Snoop requests may be generated by snoop request gen-
erating circuitry. This snoop request generating circuitry
may operate in dependence upon the unique status data
discussed above in order to filter the snoop request gener-
ated.

In some embodiments the snoop request generating cir-
cuitry is configured to respond to a transaction request to a
cache line of data received from one of the plurality of
transaction sources to suppress generation of any snoop
request to other transaction sources if that transaction hits in
the shared cache memory and is stored in a non-inclusive
mode. If the non-inclusive mode is in operation, then only a
single copy of the cache line data will be stored and if this
copy is present in the shared cache memory (as indicated by
the hit), then there is no need to check for further copies and
issue any snoop requests. This advantageously reduces the
number of snoop requests that need be generated.

In other embodiments, the snoop request generating cir-
cuitry may be configured to respond to a transaction request
to a cache line of data received from one of the plurality of
transaction sources that hits in the shared cache memory to
target generation of any snoop requests to transaction
sources identified by the transaction source identifying data
if the unique status data indicates that the cache line is stored
in the inclusive mode, i.e. more than one copy of the cache
line of data is stored and accordingly snoop requests need to
be issued to at least one of the local cache memories.

US 9,477,600 B2

3

A cache line of data may be stored by default in the
non-inclusive mode. This preserves storage capacity within
the cache hierarchy. A cache line of data may be switched
between the non-inclusive mode to the inclusive mode when
a transaction is received in respect of that cache line of data
which has one of one or more predetermined types. Certain
types of transaction may be indicative that the data con-
cerned is to be shared to a degree that the sharing efficiency
gains achieved by storing that data in an inclusive mode will
more than justify the additional cache storage capacity
consumed.

One type of transaction which may indicate such a change
in mode is a transaction that will read the cache line of data
to a local cache memory and not subsequently modify that
cache line of data when it is stored within the local cache
memory. It is known that transactions issued within memory
systems may be accompanied by signals indicating their
transaction type and the present technique exploits this by
using the transaction type to selectively switch individual
cache lines of data from being stored and manipulated in the
non-inclusive mode to instead operate with the inclusive
mode.

In some embodiments the shared cache memory may be
configured to respond to receipt of a non-modifying read
transaction from a given transaction source that hits in a
cache line of data stored in a shared cache memory by a
different source by returning that cache line of data to the
given transaction source for storing in its local cache
memory, leaving the cache line of data stored in the shared
cache memory and setting the unique status data for the
cache line to indicate that the cache line is stored associated
with multiple transaction sources. This effectively switches
and marks the cache line of data as being moved from being
processed in the non-inclusive mode to being processed in
the inclusive mode.

In other embodiments the shared cache memory may be
configured to respond to receipt of a non-modifying read
transaction from a given transaction source that misses in the
shared cache memory and hits a cache line of data stored in
a local cache memory of a different transaction source by
returning that cache line of data to the given transaction
source for storing in its local cache memory, leaving the
cache line of data stored in the local cache memory where
the hit was detected, storing the cache line of data in the
shared cache memory and setting the unique status data for
the cache line to indicate that the cache line of data is stored
and associated with multiple transaction sources. In this way
the cache line of data is again moved from the non-inclusive
mode to the inclusive mode and made more readily available
for sharing as indicated by the transaction type being a
non-modified read transaction.

As previously mentioned, the default mode for storing a
cache line may be the non-inclusive mode and a miss in
respect of a cache line of data in the shared cache memory
will accordingly, by default, store the cache line of data into
a local cache memory of a transaction source request in that
cache line data and not into the shared cache memory. The
non-inclusively stored cache line of data may subsequently
be evicted out of the local cache memory and back to the
shared cache memory while the transaction source identi-
fying data identifies that cache line of data as being asso-
ciated with the transaction source which initially requested
it and accordingly still manipulates that cache line of data in
accordance with the non-inclusive mode of operation.

Some transaction sources which may be included within
the system may not include their own local cache memory.
Such transaction sources may, for example, be a simple

10

15

20

25

30

35

40

45

50

55

60

65

4

memory mapped input/output device. In some embodiments
the one or more predetermined types of transaction include
one or more of a write unique transaction to part of a cache
line, a write unique transaction to all of the cache line and
a read once transaction that will not subsequently reuse the
cache line. These transaction types may be used to force
storage of the cache line of data in the shared cache memory
even though the transaction source does not have its own
local cache memory. The cache line of data stored in this
way may remain in the shared cache memory until they are
subsequently evicted. This provides transaction sources
without a local cache memory with at least some cache
capability.

A transaction source having a local cache memory may
issue a transaction in which the predetermined type is a read
that is shared and will not modify the cache line of data. In
response to such a transaction, the cache line of data may be
stored into the shared cache memory and into the local cache
memory of the transaction source, i.e. may be stored in an
inclusive mode overriding the default non-inclusive mode.

It will be appreciated that the transaction sources may
take a variety of different forms, some forms may be general
purpose processor cores, graphics processing units and the
like. The local cache memories may include hierarchies in
themselves, such as L1 and L2 cache memories. The shared
cache memory may be an L3 cache memory.

In some embodiments the plurality of transaction sources
may be coupled to a ring-based interconnect serving to pass
snoop requests and other transactions between the different
transaction sources. This provides a fast and efficient mecha-
nism for communication that is particularly suited to scaling
in which additional transaction sources and further shared
cache memories may be added to the system without sig-
nificant redesign or re-engineering being required.

Viewed from another aspect the present invention pro-
vides an apparatus for processing data comprising:

a plurality of transaction source means for generating
transactions, each of the plurality of transaction source
means having a local cache memory means for storing data;
and

shared cache memory means for storing data and coupled
to the plurality of transaction source means;

wherein the shared cache memory means is configured to
operate to store at least one of each cache line of data stored
and each range of cache lines of data stored in accordance
with an individually selectable one of either:

(1) an inclusive mode; and

(i1) a non-inclusive mode.

Viewed from a further aspect the present invention pro-
vides a method of processing data comprising the steps of:

generating transactions with a plurality of transaction
sources;

storing respective data in a local cache memory of each of
the plurality of transaction sources; and

storing data in a shared cache memory coupled to the
plurality of transaction sources;

operating the shared cache memory and said local cache
memories to store at least one of each cache line of data
stored and each range of cache lines of data stored in
accordance with an individually selectable one of either:

(1) an inclusive mode; and

(i1) a non-inclusive mode.

The above, and other objects, features and advantages of
this invention will be apparent from the following detailed

US 9,477,600 B2

5

description of illustrative embodiments which is to be read
in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a data processing appa-
ratus incorporating a plurality of transaction sources, each
having its own local cache memory, coupled via a ring based
interconnect to a shared cache memory;

FIG. 2 schematically illustrates the shared cache memory;

FIG. 3 schematically illustrates state data stored on a per
cache line basis and used to control coherency and inclusive/
non-inclusive mode operation for an individual cache line;

FIG. 4 schematically illustrates an alternative form of a
transaction source identifying data;

FIG. 5 is a flow diagram schematically illustrating the
control of snoop filtering; and

FIG. 6 is a flow diagram schematically illustrating how a
switch may be made between inclusive mode operation and
non-inclusive mode operation based upon transaction type.

DESCRIPTION OF THE EMBODIMENTS

FIG. 1 schematically illustrates a data processing appa-
ratus 2 in the form of a system-on-chip integrated circuit 4
coupled to a main memory 6. The system-on-chip integrated
circuit 4 includes a plurality of transaction sources including
three processor clusters 8, 10, 12, a memory controller 14
and an input/output device 16, which does not include its
own local cache memory. (In practice it may be preferred to
have an even number of processor clusters to simplify
workload sharing.) A shared L3 cache (L3$) memory 18 is
coupled to all of these transaction sources via a ring based
interconnect 20. It will be appreciated that different forms of
interconnect could be used, for example a crossbar inter-
connect.

The processor clusters 8, 10, 12 each include two general
purpose processor cores and a local cache memory, in the
form of individual [.1 caches associated with each processor
core and a shared [.2 cache that is local to the processor
cluster. The processor cluster 8, 10, 12 serves as an indi-
vidual transaction source in respect to its transactions with
the L3 cache 18.

In general non-inclusive mode operation is adopted by
default for data fetched from the main memory 6 and stored
within the cache hierarchy comprising the shared cache
memory 18 and the local cache memories within the trans-
action sources 8, 10, 12. (In other different example embodi-
ments the default mode may be inclusive). Such default
non-inclusive behavior will fetch a data item and store it
only in the local cache memory of the transaction source or
processor cluster 8, 10, 12 which requested that data item. If
that local cache memory later becomes full, then the data
may be evicted and stored within the shared cache memory
18. A single copy of that data is still stored and it will be
marked within a shared cache memory 18 as associated with
the originally fetching transaction source.

When a transaction source requests data which it does not
store within its local cache memory, then a check is first
made as to whether or not the data concerned is stored within
the shared cache memory 18. If the data is not stored within
the shared cache memory 18, then a check may be made by
broadcast snoop requests to determine if the data is stored in
the local cache memory of any of the other transaction
sources. If the cache line of data is not present in either the
shared cache memory 18 or any of the local cache memories,
then it may be fetched from the main memory 6. It will be

10

15

20

25

30

35

40

45

50

55

60

65

6

appreciated that in this example embodiment only a single
shared cache memory 18 is illustrated. It is possible that
multiple shared cache memories 18 may be provided, for
example each shared cache memory may be configured to
cache a different area of memory address space. This is a
convenient way of scaling up the amount of shared cache
memory provided by adding more shared cache memories to
the ring-based interconnect 20.

The default non-inclusive mode operation applied to
individual cache lines of data may be overridden such that
individual cache lines of data are managed in accordance
with an inclusive mode of operation in dependence upon a
transaction type of a transaction directed to cache lines of
data. This will be described further below.

FIG. 2 schematically illustrates the shared 1.3 cache (L3$)
memory 18 in more detail. This shared cache memory 18
includes a cache controller 22, snoop generation circuitry 24
and a cache array 26. The cache array stores multiple cache
lines of data 28. Each cache line of data 28 contains a data
payload consisting of a copy of data values read from the
main memory 6 (these may subsequently be modified within
the cache and later written back to the main memory 6). Also
associated with each individual cache line are MESI state
data (indicating modified, exclusive, shared and invalid
states) for coherency control management as well as unique
status data 30 and transaction source identifying data 32.

The unique status data for each cache line of data stored
in the shared cache memory and associated with a given one
of the plurality of transaction sources indicates whether that
cache line of data is stored in a local cache memory of any
other of the plurality of transaction sources. Thus, the unique
status data indicates whether or not a unique copy of that
data is stored (in this case within the shared cache memory
and associated with the originally requesting transaction
source via the transaction source identifying data 32) or
multiple copies of that data are stored and it is non-unique.

The transaction source identifying data 32 may have the
form of an RNFID field of data comprising five bits which
can specify one of 32 different values used to identify the
transaction source which originally requested the cache line
of data concerned. If the unique status data indicates that the
cache line of data is unique, then the RNFID field indicates
on behalf of which of the transaction sources the shared
cache memory 18 is currently storing that cache line of data.
If the unique status data indicates the cache line of data is not
unique, i.e. multiple copies are stored in the cache system,
then the RNFID field is invalid.

In other example embodiments multiple RNFID fields
may be supported to identify a proper subset of the trans-
action sources (more than one but less than all) which are
currently storing a copy of the cache line of data concerned
and accordingly provide directed snoop requests thereby
reducing snoop traffic. The snoop request generating cir-
cuitry 24 within the shared cache memory 18 generates
snoop requests that are dependent upon the unique status
data 30 for any cache line of data 28 that is stored within the
cache array 26 and in respect of which a transaction request
is made.

FIG. 3 schematically illustrates the state data stored on a
per cache line basis which is used to control switching from
non-inclusive mode operation to inclusive mode operation in
respect of a cache line. More particularly, the state data
includes a 5-bit RNFID field serving as a transaction source
identifier identifying the originally requesting transaction
source, a single bit of unique status data serving as a flag
indicating whether or not the cache line of data stored within
the cache system is associated with more than one transac-

US 9,477,600 B2

7

tion source and coherency control data in the form of a 2-bit
MESI field. The MESI field is conventional coherency
control data and is separate from the unique status data and
the transaction source identifying data.

FIG. 4 illustrates a further example of the form of the
transaction source identifying data In this example two
RNFID fields are provided thereby enabling deterministic
tracking of up to two transaction sources for which the cache
hierarchy is holding a copy of the cache line of data
concerned.

FIG. 5 is a flow diagram schematically illustrating snoop
filtering that may be performed by the snoop request gen-
erating circuitry 24 to reduce the amount of snoop traffic on
the ring based interconnect 20. At step 34 processing waits
until a transaction is received in the shared L3 cache (L.3$)
memory 18. At step 36 a determination is made whether or
not the transaction hits within the shared cache memory 18
(i.e. whether or not the requested cache line of data is present
within the shared cache memory 18). If there is no hit, then
step 38 snoop requests are broadcast to all of the local cache
memories of the transaction sources 8, 10, 12.

If there is a hit at step 36, then at step 40 a determination
is made whether or not the transaction type of the transaction
received at step 34 is one which seeks a unique copy of the
data and will modify that data. If the determination at step
40 is that the transaction type is not a match, then processing
proceeds to step 41 where a determination is made as to
whether the transaction is not modifying. If the transaction
is not modifying then no snoops are required. If the check at
step 41 indicates that the transaction is modifying, then
processing passes to step 42 where a snoop request is again
broadcast to all the local cache memories. If the determina-
tion made at step 40 is that there is a match, then at step 44
a determination is made whether or not there is an RNFID
mismatch between the requesting transaction received at
step 34 and the RNFID stored in the shared cache memory
18 for the cache line of data for which a hit occurred at step
36. If there is a mismatch, then at step 46 a snoop is sent
directed towards the transaction source indicated by the
RNFID for the cache line identified at step 36. If there is no
mismatch detected at step 44 then no snoop requests need to
be sent.

It will be seen from step 40 that a determination is made
as to whether or not the unique status data for the cache line
which hit at step 36 indicates a unique status and that this
modifies the snoop behaviour. i.e. if either the cache data is
not unique or the transaction is not a modifying transaction,
then processing proceeds to step 41 and possibly to step 42
where a snoop request is sent to all of the local caches.
Alternatively, if the unique status data has another value
indicating that the cache line of data is unique and the
transaction is modifying, then a different form of snoop
behaviour is carried out by steps 44 and 46.

FIG. 6 schematically illustrates a flow diagram showing
how a change may be made from inclusive mode operation
to non-inclusive mode operation in dependence upon trans-
action type. At step 48 processing waits until a transaction
is received in the shared L3 cache (13$) memory 18. At step
50 a determination is made whether or not there is a hit
within the shared cache memory 18. If there is not a hit, then
step 52 all of the local cache memories. Step 54 a determi-
nation is then made whether or not there is a hit within
another of the local cache memories. If there is a hit, then
step 56 determines whether or not the transaction type is a
read_clean transaction type, i.e. a transaction which will
read the data concerned but will not subsequently modify it.
If the transaction is such a read_clean transaction, then step

10

15

20

25

30

35

40

45

50

55

60

65

8

58 the data retrieved from the [.1/[.2 cache that hit at step 54
is stored into the shared cache memory 18 and marked as
non-unique using the unique status data 30. If the transaction
type is not read_clean, then step 58 is bypassed and the data
is not stored in to the shared cache memory 18.

At step 60 the data retrieved from the [.1/1.2 cache that hit
at step 54 is returned to the requesting transaction source and
stored into the local cache memory of the requesting trans-
action source. Thus, in dependence upon whether or not the
transaction type is a read_clean transaction the data will be
stored in the shared cache memory 18 as well as in the local
cache memory and thus will be stored in an inclusive mode
of operation. Thus, the data is stored in a mode of operation
different from the default non-inclusive mode of operation.

If the determination at step 50 indicates that there is a hit
within the shared cache memory 18, then at step 62 a
determination is made whether or not the transaction type of
the transaction received at step 48 is read_clean. If the
transaction type is read_clean then at step 64 a determination
is made whether or not there is a mismatch in the RNFID of
the transaction received at step 48 and the value of this field
stored for the cache line for which the hit occurred at step 50.
If there is no mismatch, then at step 66 the data is simply
returned to the requesting transaction source and the line
invalidated in the shared cache memory 18. If there is an
RNFID mismatch detected at step 64, then at step 68 the data
is returned to the requesting transaction source and the
unique status data changed to indicate a non-unique status,
i.e. that the cache line of data is now being stored on behalf
of' more than one transaction source, thus, at step 68 the data
is changed from being stored and manipulated in accordance
with a non-inclusive mode of operation that is the default
into an inclusive mode of operation.

If the determination at step 62 is that the transaction type
is not a read_clean transaction type, then processing pro-
ceeds to step 70 where the data is read from the shared cache
memory 18, invalidated in the shared cache memory 18 and
stored into the requesting transaction source’s local cache
memory. The cache line of data thus remains as being
managed in accordance with a non-inclusive mode of opera-
tion.

If the determination at step 54 was that there was no hit
in another local cache memory following the absence of a hit
within the shared cache memory at step 50, then processing
proceeds to step 72. At step 72 a determination is made
whether or not the transaction type of the transaction
received at step 48 matches any one of a write_unique (WU)
transaction (writes less than a full cache line of data),
write_unique_line (WUL) transaction (writes a full cache
line of data) or read once transaction (reads once, but will
not subsequently reuse the data). If the transaction type does
match at step 72, then at step 74 the data is read from the
main memory, stored into the shared cache memory 18,
marked as unique using the unique status data and returned
to the requesting transaction source, such as the input/output
device 16. This input/output device 16 does not include its
own local cache memory and accordingly the data stored
within the shared cache memory 18 at step 74 can serve as
a cache for the otherwise cacheless transaction source 16.

If there is no transaction type matched at step 72, then
processing proceeds to step 76 where a determination is
made as to whether or not the transaction type is a read_
shared_clean transaction type. This is the type of transaction
which is typically issued for an instruction fetch for an
instruction to be executed by a processor. If there is a
transaction type match at step 76, then at step 78 the data is
read from the main memory, and stored into the shared cache

US 9,477,600 B2

9

memory 18, the cache line of data using its MESI field as
shared data, return the data to the requesting transaction
source and the data is stored into the local cache memory of
the requesting transaction source. A step 78, the cache line
of data is not marked at this stage as non-unique, but the
presence of this data within the shared cache memory 18 is
in accordance with inclusive mode of operation and that
cache line of data may be subsequently marked as non-
unique via step 68 if another transaction source seeks to
perform a read_clean operation on the cache line of data.

If there is no transaction type match at step 76, then at step
80 default processing is performed in which the requested
cache line of data is read from the main memory, returned to
the requesting transaction source and stored within the local
cache memory of the requesting transaction source.

Although illustrative embodiments of the invention have
been described in detail herein with reference to the accom-
panying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various
changes and modifications can be effected therein by one
skilled in the art without departing from the scope and spirit
of the invention as defined by the appended claims.

We claim:

1. Apparatus for processing data comprising:

a plurality of transaction sources, each of said plurality of

transaction sources having a local cache memory; and

a shared cache memory coupled to said plurality of

transaction sources;

wherein said shared cache memory is configured to store

at least one of:

each cache line of data stored in said shared cache
memory; and

each range of cache lines of data stored in said shared
cache memory in accordance with an individually
selectable one of either:

(1) an inclusive mode; and

(i) a non-inclusive mode; and wherein a change
between said inclusive mode and said non-inclusive
mode for a cache line is made in accordance with a
transaction type indicating a degree of sharing for a
transaction received by said shared cache memory
for that cache line.

2. Apparatus as claimed in claim 1, wherein state data
stored in said shared cache memory indicates whether a
cache line of data is stored in said inclusive mode or said
non-inclusive mode.

3. Apparatus as claimed in claim 2, wherein said shared
cache memory is configured to store unique status data for
each cache line of data stored in said shared cache memory
and associated with a given one of said plurality of trans-
action sources, said unique status data indicating whether a
cache line of data associated with a given one of said
plurality of transaction sources is stored in a local cache
memory of any other of said plurality of transaction sources.

4. Apparatus as claimed in claim 3, wherein said shared
cache memory is configured to store transaction source
identifying data for a cache line of data identifying one or
more of said plurality of transaction sources associated with
that cache line of data.

5. Apparatus as claimed in claim 4, wherein said trans-
action source identifying data identifies a single transaction
source of said plurality of transaction sources.

6. Apparatus as claimed in claim 4, wherein said trans-
action source identifying data identifies up to a maximum
number of said plurality of transaction sources correspond-
ing to a proper subset of said plurality of transaction sources.

15

20

25

40

45

50

55

60

10

7. Apparatus as claimed in claim 3, wherein said shared
cache memory includes snoop request generating circuitry
that generates snoop requests in dependence upon said
unique status data.

8. Apparatus as claimed in claim 3, wherein said shared
cache memory includes snoop request generating circuitry
configured to respond to a transaction request to a cache line
of data received from one of said plurality of transaction
sources to suppress generation of any snoop requests to
other transaction sources if said transaction request hits in
said shared cache memory and is stored in said non-inclu-
sive mode.

9. Apparatus as claimed in claim 5, wherein said shared
cache memory includes snoop request generating circuitry
configured to respond to a transaction request to a cache line
of data received from one of said plurality of transaction
sources that hits in said shared cache memory to target
generation of any snoop requests to transaction sources
identified by said transaction source identifying data if said
unique status data indicates that cache line of data is stored
in said inclusive mode.

10. Apparatus as claimed in claim 3, wherein said shared
cache memory is configured to respond to receipt of a
transaction of one or more predetermined types from a
transaction source that hits a cache line of data stored in said
shared cache memory in said non-inclusive mode by switch-
ing from storing that cache line of data in said non-inclusive
mode to storing that cache line of data in said inclusive
mode.

11. Apparatus as claimed in claim 10, wherein said one or
more predetermined types includes transactions that will
read a cache line of data to a local cache memory and not
subsequently modify that cache line of data stored in that
local cache memory.

12. Apparatus as claimed in claim 3, wherein said shared
cache memory is configured to respond to receipt of a
non-modifying read transaction from a given transaction
source that hits a cache line of data stored in said shared
cache memory by a different transaction source by returning
that cache line of data to said given transaction source for
storing in a local cache memory of said given transaction
source, leaving that cache line of data stored in said shared
cache memory and setting the unique status data for that
cache line of data to indicate that cache line of data is stored
associated with a plurality of transaction sources.

13. Apparatus as claimed in claim 3, wherein said shared
cache memory is configured to respond to receipt of a
non-modifying read transaction from a given transaction
source that misses in said shared cache memory and hits a
cache line of data stored in a local cache memory of a
different transaction source by returning that cache line of
data to said given transaction source for storing in a local
cache memory of said given transaction source, leaving that
cache line of data stored in said local cache memory of said
different transaction source, storing that cache line of data in
said shared cache memory and setting the unique status data
for that cache line of data to indicate that cache line of data
is stored associated with a plurality of transaction sources.

14. Apparatus as claimed in claim 1, wherein said non-
inclusive mode is a default mode for storing a cache line of
data and a miss for a cache line of data in said shared cache
memory by default stores that cache line of data in a local
cache memory of a transaction source requesting that cache
line of data and not in said shared cache memory.

15. Apparatus as claimed in claim 14, wherein said shared
cache memory is configured to respond to receipt of a
transaction of one or more predetermined types from a

US 9,477,600 B2

11

transaction source that misses in said shared cache memory
to store a corresponding cache line of data to said shared
cache memory in said inclusive mode.

16. Apparatus as claimed in claim 15, wherein said
transaction source that misses in said shared cache memory
does not have a local cache memory and said one or more
predetermined types include one or more of:

(1) a write unique transaction to a part of a cache line of

data;

(ii) a write unique transaction to all of a cache line of data;
and

(iii) a read once transaction of a cache line of data that will
not subsequently reuse that cache line of data.

17. Apparatus as claimed in claim 16, wherein the trans-
action source that does not have a local cache memory is
input/output circuitry.

18. Apparatus as claimed in claim 15, wherein said
transaction source that misses in said shared cache memory
has a local cache memory, said one or more predetermined
types include a read transaction for a cache line of data
marked as to be shared and not modified, and said cache line
of data marked as to be shared and not modified is stored in
said shared cache memo and said focal cache memory of
said transaction source that misses in said shared cache
memory.

19. Apparatus as claimed in claim 1, wherein said plu-
rality of transaction sources includes one or more processor
cores.

20. Apparatus as claimed in claim 1, wherein said local
cache memory of each transaction source includes a level 1
(L1) and level 2 (L2) cache memory.

21. Apparatus as claimed in claim 1, wherein said shared
cache memory is a level 3 (L3) cache memory.

22. Apparatus as claimed in claim 1, wherein said plu-
rality of transaction sources is coupled to ring-based inter-
connect circuitry.

23. Apparatus for processing data comprising:

a plurality of transaction source means for generating
transactions, each of said plurality of transaction source
means having a local cache memory means for storing
data; and

10

15

25

30

35

12

shared cache memory means for storing data and coupled
to said plurality of transaction source means;
wherein said shared cache memory means is configured to
store at least one of:
each cache line of data stored in said shared cache
memory means; and
each range of cache lines of data stored in said shared
cache memory means in accordance with an indi-
vidually selectable one of either:
(1) an inclusive mode; and
(i1) a non-inclusive mode; and
wherein a change between said inclusive mode and said
non-inclusive mode is made for a cache line in accor-
dance with a transaction type indicating a degree of
sharing for a transaction received by said shared cache
memory means for that cache line.
24. A method of processing data comprising the steps of:
generating transactions with a plurality of transaction
sources;
storing respective data in a local cache memory of each of
said plurality of transaction sources; and
storing data in a shared cache memory coupled to said
plurality of transaction sources;
operating said shared cache memory and the local cache
memory of each of said plurality of transaction sources
to store at least one of:
each cache line of data stored in said shared cache
memory; and
each range of cache lines of data stored in said shared
cache memory in accordance with an individually
selectable one of either:
(1) an inclusive mode; and
(i1) a non-inclusive mode; and
wherein a change between said inclusive mode and said
non-inclusive mode is made for a cache line in accor-
dance with a transaction type indicating a degree of
sharing for a transaction received by said shared cache
memory for that cache line.

#* #* #* #* #*

